15 research outputs found

    Enhanced Motion Control Concepts on Parallel Robots

    Get PDF

    <sup>18</sup>F-Fludeoxyglucose-Positron Emission Tomography/Computed Tomography and Laparoscopy for Staging of Locally Advanced Gastric Cancer:A Multicenter Prospective Dutch Cohort Study (PLASTIC)

    Get PDF
    Importance: The optimal staging for gastric cancer remains a matter of debate. Objective: To evaluate the value of 18F-fludeoxyglucose-positron emission tomography with computed tomography (FDG-PET/CT) and staging laparoscopy (SL) in addition to initial staging by means of gastroscopy and CT in patients with locally advanced gastric cancer. Design, Setting, and Participants: This multicenter prospective, observational cohort study included 394 patients with locally advanced, clinically curable gastric adenocarcinoma (≥cT3 and/or N+, M0 category based on CT) between August 1, 2017, and February 1, 2020. Exposures: All patients underwent an FDG-PET/CT and/or SL in addition to initial staging. Main Outcomes and Measures: The primary outcome was the number of patients in whom the intent of treatment changed based on the results of these 2 investigations. Secondary outcomes included diagnostic performance, number of incidental findings on FDG-PET/CT, morbidity and mortality after SL, and diagnostic delay. Results: Of the 394 patients included, 256 (65%) were men and mean (SD) age was 67.6 (10.7) years. A total of 382 patients underwent FDG-PET/CT and 357 underwent SL. Treatment intent changed from curative to palliative in 65 patients (16%) based on the additional FDG-PET/CT and SL findings. FDG-PET/CT detected distant metastases in 12 patients (3%), and SL detected peritoneal or locally nonresectable disease in 73 patients (19%), with an overlap of 7 patients (2%). FDG-PET/CT had a sensitivity of 33% (95% CI, 17%-53%) and specificity of 97% (95% CI, 94%-99%) in detecting distant metastases. Secondary findings on FDG/PET were found in 83 of 382 patients (22%), which led to additional examinations in 65 of 394 patients (16%). Staging laparoscopy resulted in a complication requiring reintervention in 3 patients (0.8%) without postoperative mortality. The mean (SD) diagnostic delay was 19 (14) days. Conclusions and Relevance: This study's findings suggest an apparently limited additional value of FDG-PET/CT; however, SL added considerably to the staging process of locally advanced gastric cancer by detection of peritoneal and nonresectable disease. Therefore, it may be useful to include SL in guidelines for staging advanced gastric cancer, but not FDG-PET/CT

    Exhumation history along the eastern Amundsen Sea coast, West Antarctica, revealed by low-temperature thermochronology

    Get PDF
    West Antarctica experienced a complex tectonic history, which is still poorly documented, in part due to extensive ice cover. Here we reconstruct the Cretaceous to present thermotectonic history of Pine Island Bay area and its adjacent coasts, based on a combination of apatite and zircon fission track and apatite (U-Th-Sm)/He thermochronology. In addition, we report petrographic information for the catchments of Pine Island, Thurston Island, and Thwaites glaciers. Our data suggest that the underlying bedrock of the Pine Island and Thwaites Glacier catchments are very different and vary from granitoids to (Cenozoic?) volcanogenic sequences and low-grade metamorphics. Our thermochronology data show that the upper crustal rocks of Pine Island Bay experienced very rapid cooling during the late Cretaceous. We attribute this rapid cooling of basement rocks and associated reduction in mean elevation to tectonic denudation driven by gravitational collapse of the Cretaceous orogen along the proto-Pacific Gondwana margin. Rapid Cretaceous crustal cooling was followed by very slow cooling during the Cenozoic, with no erosional response—within the limits of thermochronological methods—to the onset of glaciation and subsequent climatic changes. Cenozoic rifting within the West Antarctic Rift appears to have had little effect on erosion processes around Pine Island Bay; instead, our data suggest Cenozoic crustal tilting toward Pine Island Trough, a major geomorphic feature previously suggested to be a branch of the rift system

    Intraoperative post-annuloplasty three-dimensional valve analysis does not predict recurrent ischemic mitral regurgitation

    Get PDF
    Background: High ischemic mitral regurgitation (IMR) recurrence rates continue to plague IMR repair with undersized ring annuloplasty. We have previously shown that pre-repair three-dimensional echocardiography (3DE) analysis is highly predictive of IMR recurrence. The objective of this study was to determine the quantitative change in 3DE annular and leaflet tethering parameters immediately after repair and to determine if intraoperative post-repair 3DE parameters would be able to predict IMR recurrence 6 months after repair. Methods: Intraoperative pre- and post-repair transesophageal real-time 3DE was performed in 35 patients undergoing undersized ring annuloplasty for IMR. An advanced modeling algorhythm was used to assess 3D annular geometry and regional leaflet tethering. IMR recurrence (>= grade 2) was assessed with transthoracic echocardiography 6 months after repair. Results: Annuloplasty significantly reduced septolateral diameter, commissural width, annular area, and tethering volume and significantly increased all segmental tethering angles (except A2). Intraoperative post-repair annular geometry and leaflet tethering did not differ significantly between patients with recurrent IMR (n = 9) and patients with non-recurrent IMR (n = 26). No intraoperative post-repair predictors of IMR recurrence could be identified. Conclusions: Undersized ring annuloplasty changes mitral geometry acutely, exacerbates leaflet tethering, and generally fixes IMR acutely, but it does not always fix the delicate underlying chronic problem of continued left ventricular dilatation and remodeling. This may explain why pre-repair 3D valve geometry (which reflects chronic left ventricular remodeling) is highly predictive of recurrent IMR, whereas immediate post-repair 3D valve geometry (which does not completely reflect chronic left ventricular remodeling anymore) is not

    Seismic stratigraphic record of the Amundsen Sea Embayment shelf from pre-glacial to recent times: Evidence for a dynamic West Antarctic ice sheet

    Get PDF
    Studies of the sedimentary architecture and characteristics of the Antarctic continental margin provide clues about past ice sheet advance-retreat cycles and help improve constraints for paleo-ice dynamic models since early glacial periods. A first seismostratigraphic analysis of the Amundsen Sea Embayment shelf and slope of West Antarctica reveals insights into the structural architecture of the continental margin and shows stages of sediment deposition, erosion and transport reflecting the history from pre-glacial times to early glaciation and to the late Pleistocene glacial-interglacial cycles. The shelf geometry consists of a large pre- and syn-rift basin in the middle shelf region between basement cropping out on the inner shelf and buried basement ridge and highs on the outer shelf. A subordinate basin within the large basin on the mid-shelf may be associated with motion along an early West Antarctic Rift System branch. At least 4 km of pre-glacial strata have been eroded from the present inner shelf and coastal hinterland by glacial processes. Six major sedimentary units (ASS-1 to ASS-6) separated by five major erosional unconformities (ASS-u1 to ASS-u5) are distinguished from bottom to top. Unconformity ASS-u4 results from a major truncational event by glacial advance to the middle and outer shelf, which was followed by several episodes of glacial advance and retreat as observed from smaller-scale truncational unconformities within the units above ASS-u4. Some of the eroded sediments were deposited as a progradional wedge that extends the outer shelf by 25 to 65 km oceanward of the pre-glacial shelf-break. We compare the observed seismic characteristics with those of other Antarctic shelf sequences and assign an Early Cretaceous age to bottom sedimentary unit ASS-1, a Late Cretaceous to Oligocene age to unit ASS-2, an Early to Mid-Miocene age to unit ASS-3, a Mid-Miocene age to unit ASS-4, a Late Miocene to Early Pliocene age to unit ASS-5, and a Pliocene to Pleistocene age to the top unit ASS-6. Buried grounding zone wedges in the upper part of unit ASS-5 on the outer shelf suggest pronounced warming phases and ice sheet retreats during the early Pliocene as observed for the Ross Sea shelf and predicted by paleo-ice sheet models. Our data also reveal that on the middle and outer shelf the flow-path of the Pine Island-Thwaites paleo-ice stream system has remained stationary in the central Pine Island Trough since the earliest glacial advances, which is different from the Ross Sea shelf where glacial troughs shifted more dynamically. This study and its stratigraphic constraints will serve as a basis for future drilling operations required for an improved understanding of processes and mechanisms leading to change in the West Antarctic Ice Sheet, such as the contemporary thinning and grounding line retreat in the Amundsen Sea drainage sector
    corecore